If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2=24x+54
We move all terms to the left:
14x^2-(24x+54)=0
We get rid of parentheses
14x^2-24x-54=0
a = 14; b = -24; c = -54;
Δ = b2-4ac
Δ = -242-4·14·(-54)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-60}{2*14}=\frac{-36}{28} =-1+2/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+60}{2*14}=\frac{84}{28} =3 $
| 14x^2=24+54 | | 5^2+25x=0 | | 12(1.045)^x=100 | | 3x^2+2x/2x+9=5 | | 3y²+7y+1=0 | | n+2n=38 | | 2(2x-1)=2(2x+10) | | -4(x+6)2+16=0 | | 4x2-22=x2+5 | | X²+18x+81=0 | | 3a^2-5+3=0 | | (1/3x-1)(1/2x-7)=0 | | 11-2x/3=5 | | 3a^2-5/3+1=0 | | 4x^+19x=5 | | 7/2a=16 | | 9+4x+15=42 | | T(3.5)=35d+20 | | X/2(x+3)-7x=18+5(x+4) | | (3/1)x+4=(4x-1)/5 | | 5^2x*5/5^3x-2=(25)^-2 | | 5^2x*55^3x-2=(25)^ | | (3y+24)2=12 | | t–4=10 | | x²+8x=105 | | 0=x^-90X+2000 | | x²+8x-105=0 | | 9x⁴+241x⁴+525=125 | | F.8=8f | | 5n^2+11n-4830=0 | | √5x2-x-√5=0 | | 5n^2+11n-483=0 |